

Fluid-Structure Interaction Analysis of a Peristaltic Pump

Nagi Elabbasi, Jorgen Bergstrom and Stuart Brown

Veryst Engineering® , LLC nelabbasi@veryst.com

Presented at the 2011 COMSOL Conference

Peristaltic Pumps

- Valuable for pumping abrasive fluids, corrosive fluids and delicate fluids
- Rugged pump design requiring minimal maintenance
- Used in pharmaceutical, petrochemical, biomedical and food processing industries

Pump Modeling

- Nonlinear, coupled fluid-structure interaction
- Structural nonlinearities include:
 - Tube material behavior
 - Contact
 - Large deformations
- Important to know tube stresses and strains for lifetime prediction
- Optimal design depends on fluid properties and flow rate

Rotary Peristaltic Pump Model

- Two metallic rollers and an elastomeric tube pumping a viscous Newtonian fluid at a speed of 60 Hz
- Model setup parametrically using native COMSOL geometry

Tube Modeling

- Tube material one of main limiting factors affecting pump performance
- Typically made of elastomers like silicone or thermoplastic elastomers such as Norprene® or Tygon®

Available Material Models

- Linear elastic
- Nonlinear models
 - Hyperelastic
 - Neo-Hookean, Mooney-Rivlin, Murnaghan, User-defined
 - Viscoelastic
 - Geotechnical
- User-defined hyperelastic model most suitable for matching material model to experimental stress-strain behavior

Fluid Modeling

- Incompressible Newtonian fluid
- Laminar Navier-Stokes equations
- Peristaltic pumps commonly used for non-Newtonian fluids
- Moving fluid-mesh follows solid deformation
- FSI interface automatically handled by COMSOL

$$\boldsymbol{\sigma} \cdot \mathbf{n} = \underline{\boldsymbol{\Gamma}} \cdot \underline{\mathbf{n}} \,, \quad \boldsymbol{\Gamma} = \left[-\mathbf{p} \mathbf{I} + \mu \left(\nabla \mathbf{u}_{\mathsf{fluid}} + (\nabla \mathbf{u}_{\mathsf{fluid}})^T \right) \right]$$

Contact Modeling

- Rollers are contact
 "source", tube is contact
 "destination" due to
 higher relative stiffness
 of rollers
- No friction, rollers not allowed to rotate
- Contact Lagrange multipliers solved for as "Lumped Step" in segregated solver

Contact Pair 1

Contact Pair 2

Step 1: Move Rollers in Place

 Damped transient analysis to get rollers in correct starting configuration

Step 2: Rotate Rollers

- Transient analysis with prescribed roller rotation
 - Wait until transient dies out

Solution Approaches for FSI Problem

- Solve both solid and fluid fields simultaneously
 - Two-way coupled solution
 - More accurate (for some pump configurations)
 - More computational resources (memory and time)
- Solve solid field followed by fluid field
 - Coupling only from solid to fluid
 - Less accurate
 - Less computational resources

Pump Deformation

Fluid Velocity

Fluid Velocity

Stresses in Tube

Stresses in Tube

Flow Rate (and Fluctuations)

- Significant flow fluctuations including flow reversal at point of roller separation from tube (vertical roller position)
- In practice fluctuations reduced by roller design