2D axial-symmetric model for fluid flow and heat transfer in the melting and resolidification of a vertical cylinder

Simon Morville, Muriel Carin, Denis Carron, Philippe Le Masson
Laboratoire LIMATB - Université de Bretagne Sud – UEB - FRANCE

Maryse Muller, Myriam Gharbi, Patrice Peyre, Rémy Fabbro
Laboratoire PIMM - UMR 8006 - CNRS-Arts et Métiers ParisTech - FRANCE

Thursday, November 18th 2010
Direct Metal Laser Deposition (DMLD) is an original technique from rapid prototyping, part repairing and surface treatment of metals. This process involves injecting metal powder through a coaxial nozzle into a melt pool obtained by a moving laser beam.

Three operating parameters:
- laser power (W)
- powder mass flux (kg.s\(^{-1}\))
- travel speed (m.s\(^{-1}\))

Main current limitations of DMLD processes: **surface finish**

Two surface finish criteria:
- Waveness (Wa)
- Roughness (Ra)

Project goals:
- Provide a real physical understanding of the melt pool behaviour in DMLD
- Develop a predictive model of DMLD process

Improve surface finish to obtain surface state near surface machining
Proposed approach

2D-axi heat transfer and fluid flow model

⇒ validation of the surface tension and input parameters

3D model for heat transfer and fluid flow

⇒ validation of the surface tension in 3D

3D DMLD process modeling

⇒ study of the waveness (Wa)

2D model for heat transfer and fluid flow with filler material

⇒ validation of the analytical filler material model
⇒ study of the melt pool behavior

Unknown data:
- L/G and L/S interfaces
- Temperature field
- Velocity field
Study of local melting of a vertical rod

Experimental set-up:

- Metallic rod Ø3.2mm
- Input shielding gas
- Spotlights
- High speed camera
- Location of the liquid/solid interface
- Thermocouples Type K
- Dynamic shape of the melt zone
- Thermal cycles
2D axial symmetry

- The model needs to describe several phenomena...

...coupled to the evolution of the laser/melt pool interaction and free surface deformation.

2Daxi model:
- fluid flow → NS
- heat transfer → HT
- moving mesh → ALE
Equations

Heat transfer equation
\[
\rho(T) c_p(T) \left[\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right] - \nabla \cdot (\lambda(T) \nabla T) = 0
\]

Momentum conservation equation
\[
\rho \left[\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right] = -\nabla p + \mu(T) \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right) + \mathbf{F}_T + \mathbf{F}_v
\]

(\text{incompressible Newtonian fluid})

Continuity equation
\[
\nabla \cdot \mathbf{u} = 0
\]

Moving mesh
- ALE method (Winslow smoothing method)

- equivalent \(c_p \) method
\[
c_p(T) = c_p(T) + \Delta H_f \frac{df_f}{dT}
\]

- Darcy condition (liquid/solid interface)
\[
\mathbf{f}_{\text{d}} = \begin{cases}
\frac{T - T_s}{T_s - T_q} & T \leq T_s \\
\frac{T_s - T_q}{T_q} & T_s < T \leq T_q \\
1 & T > T_q
\end{cases}
\]

- Volume forces (Buoyancy, gravity)
\[
\mathbf{F}_v = \rho \left(1 - \beta (T - T_0) \right) \mathbf{g}
\]

- Latent heat

Thursday, November 18th 2010 – European Comsol Conference

Simon Morville, PhD
Mesh & boundary conditions

- **Mesh element size**

- **Fluid flow conditions**

 Surface tension: \(\sigma_n \vec{n} = -P_a \vec{n} + \gamma(T) \kappa \vec{n} \)

 Marangoni: \(\sigma_r = \frac{\partial \gamma}{\partial T}(T, S\%) \, \vec{V}T \cdot \vec{n} \)

- **Moving mesh condition**

 \(U_{\text{mesh}} \cdot \vec{n} = U_{\text{material}} \cdot \vec{n} \)

- **Heat transfer conditions**

 \(q_{\text{rad}} = \begin{cases} \alpha(\theta) I_0(r, t) - h_c (T - T_0) - \varepsilon \sigma (T^4 - T_0^4) & (\partial \Omega^1) \\ -h_c (T - T_0) - \varepsilon \sigma (T^4 - T_0^4) & (\partial \Omega^2) \end{cases} \)

with: \(I_0(r, t) = \begin{cases} \frac{P_I}{\pi r_i^2} \delta(t) & r \leq r_i \\ 0 & r > r_i \end{cases} \)

\(\alpha(\theta) = \alpha_0 \cos(\theta) \)
Input parameters:

Material

Properties for liquid phase:
\[\rho, c_p, \lambda, \mu, \gamma, \frac{\partial y}{\partial T}, \varepsilon \]

Laser

Heat source
- Incident laser power: 962 W
- Laser beam radius: 1.57 mm
- Interaction time: 500 ms
- Absorptivity coefficient: \(\alpha \)?

Heat losses

Convective and radiative loss
- Convective coefficient: 15 W.m\(^{-2}\).K
- Emissivity coefficient: 0.5
Numerical results

Input parameters:

Non linear solver parameters

Non linear parameters
Sensitivity analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference values</th>
<th>Relative error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal conductivity (S-L)</td>
<td>40-32 W.m(^{-1}).K(^{-1})</td>
<td>-13.5</td>
</tr>
<tr>
<td>Heat capacity (S-L)</td>
<td>500-710 J.kg(^{-1}).K(^{-1})</td>
<td>-23.8</td>
</tr>
<tr>
<td>Density (S-L)</td>
<td>7800-7290 kg.m(^{-3})</td>
<td>-22.1</td>
</tr>
<tr>
<td>Dynamic viscosity</td>
<td>5.10(^{-3}) Pa.s</td>
<td>-1.6</td>
</tr>
<tr>
<td>Capillary coefficient</td>
<td>1.5 N.m(^{-1})</td>
<td><1</td>
</tr>
<tr>
<td>Thermocapillary coefficient</td>
<td>10(^{-4}) N.m(^{-1}).K(^{-1})</td>
<td>2.1</td>
</tr>
<tr>
<td>Absorptivity coefficient</td>
<td>0.3</td>
<td>32.4</td>
</tr>
<tr>
<td>Emissivity coefficient</td>
<td>0.5</td>
<td><1</td>
</tr>
<tr>
<td>Latent heat of fusion</td>
<td>2.5.10(^{5}) J.kg(^{-1})</td>
<td>1</td>
</tr>
</tbody>
</table>

Each parameter is independently increased by 25% to evaluate his sensibility on the melt pool depth.

Conclusions from sensitivity analysis:

- Input data very influential on melt pool geometry: thermal diffusivity and absorptivity
- Thermocapillary forces strongly control melt pool geometry
- Gravity and Buoyancy forces can be neglected
Conclusions from sensitivity analysis:

- Input data very influential on melt pool geometry: thermal diffusivity and absorptivity
- Thermocapillary forces strongly control melt pool geometry
- Gravity and Buoyancy forces can be neglected

\[\vec{F}_v = \rho_0 \cdot \vec{g} - \rho_0 \beta \cdot (T - T_0) \cdot \vec{g} \]
Experimental validation

Conclusions:

Good correlation between numerical and experimental results for thermal cycles and liquid/gas interface location.

Best fit for liquid/solid interface by adjusting $\frac{\partial \gamma}{\partial T}$ as shown by the sensibility analysis.
Conclusions & Perspectives

- 2D axial-symmetric model well describes physics thermohydraulic phenomena involved in local metallic rod melting:
 - Good correlation for:
 - thermal cycles
 - Dynamic shapes of liquid/gas interface
 - Liquid/solid interface location
- Simplifying assumptions are validated:
 - Gravity and Buoyancy forces negligible in our case
- Thermal properties, absorptivity coefficient and thermocapillary coefficient are key parameters for the prediction of the geometry

Next steps:
- Validation of TA6V titanium alloy and 316L steel properties
- Implementation of a 2D thermohydraulic model with powder feeding
- Computation in a 3D framework for DMLD process modeling