Coupling Miscible Flow and Geochemistry for Carbon Dioxide Flooding into North Sea Chalk Reservoir

Ph.D. Student Ben Niu
Supervisor: Ass. Prof. Alexander A. Shapiro
Ass. Prof. Wei Yan
Prof. Erling H. Stenby
Content

• Introduction
• Aim of the study
• Numerical tests
• Modeling of CO₂ flooding
• Conclusions & Future plan
Introduction CO\textsubscript{2} Flooding

- CO\textsubscript{2} flooding of oil reservoir can potentially enhance oil recovery significantly. At the same time, injected CO\textsubscript{2} could be captured during this process.

- CO\textsubscript{2} flooding is characterized by complex phase behavior and geochemical reactions

- The mineral dissolution and precipitation changes the porosity and permeability.

- The reservoir simulators for CO\textsubscript{2} flooding and the geothermal simulators for CO\textsubscript{2} sequestration usually have different focuses
Introduction Why COMSOL

• COMSOL Multiphysics offers multi-functionality (Including both transport and geochemical reaction)

• The interface is friendly to user. The model can be easily modified to solve other problems.

• Different application modes are suitable for complex problems.
Aim of the Study

- Test the performance of COMSOL Multiphysics in simulating enhanced oil recovery (EOR) process by comparing results with analytical solution

- Investigate how to simulate CO$_2$ flooding including both three-phase flow and geochemical reaction by using COMSOL Multiphysics
Numerical Tests Gas Flooding

• In gas flooding, component separation happens while flowing. The transfer of components between flowing phases strongly influences displacement performance.

• Main Equations in 1-D for two component displacement

Molar conservation

\[\phi \frac{\partial}{\partial t} \left(S_g \rho_g x_{g,g} + S_o \rho_o x_{g,o} \right) + \frac{\partial}{\partial x} \left(x_{g,g} \rho_g u_g + x_{g,o} \rho_o u_o \right) = 0 \]

\[S_g + S_o = 1 \]

Darcy’s law

\[u_j = -\frac{k k_{r,j}}{\mu_j} \frac{\partial P}{\partial x}, \quad j = o, g \]

\[u_j = f_j u = f_j (u_o + u_g) \]
Numerical Tests Gas Flooding

- By assuming that molar density of gas component is constant in two phases and introducing dimensionless parameters,

\[\rho_{c,q} c_{q,j} = \rho_j x_{q,j} \]

\[\tau = \frac{u_{inj} t}{\phi L}, \zeta = \frac{x}{L}, u_D = \frac{u}{u_{inj}} \]

Molar conservation becomes

\[\frac{\partial N_g}{\partial \tau} + \frac{\partial F_g}{\partial \zeta} = 0 \]

\[N_g = S_g c_{g,g} + S_o c_{g,o} \]

\[F_g = f_g c_{g,g} + f_o c_{g,o} \]

To compare with the analytical solution, constant pressure and velocity is assumed

\[c_{g,g} = 0.95 \quad c_{g,o} = 0.2 \]
Numerical Tests
Gas Flooding

- By applying $N_g(\tau, 0) = 0.975$
 $N_g(0, \zeta) = 0.2$ and artificial diffusion

Comparison of analytical solution and COMSOL solution in gas flooding $\tau = 0.6$
Numerical Tests Polymer Flooding

• In polymer flooding, polymer is added to water to increase its viscosity so as to mobilize more oil. However, the polymer can be adsorbed on rock surface, and the decreasing concentration of polymer in water will affect the flow of water phase

• Main Equations in 1-D

Transport equations

\[
\phi \frac{\partial S_w}{\partial t} + u \frac{\partial f_w}{\partial x} = 0
\]

\[
\phi \frac{\partial}{\partial t} (S_w c_c + c_s) + u \frac{\partial}{\partial x} (f_w c_c) = 0
\]

Fractional flow equations

\[
f_w = \frac{k_{rw}}{k_{rw} + k_{ro} \mu_w / \mu_o}
\]

\[
k_{ro} = (1 - \psi)^2 (1 + 2\psi)
\]

\[
k_{rw} = 0.25 \psi^2
\]

Water viscosity

\[
\mu_w = \mu_w^0 (1 + \beta c)
\]

Langmuir Adsorption

\[
c_s = \frac{NKc}{1 + Kc}
\]

10/27/2009 Ben Niu
Numerical Tests Polymer Flooding

• By applying
 \[\tau = 0 : \quad S_w = 0.6, \quad c = 0 \text{ g/liter} \]
 \[\zeta = 0 : \quad S_w = 1.0, \quad c = 1.0 \text{ g/liter} \]

Comparison of analytical solution and COMSOL solution in Polymer flooding \(\tau = 0.4 \)
Modeling of CO$_2$ flooding

- When CO$_2$ is injected into oil reservoir, three phases are present: oil, CO$_2$ and water. The water phase contains ions and dissolved CO$_2$. The mineral reaction is,

$$CO_2(aq) + H_2O + CaCO_3(mineral) \iff Ca^{2+} + 2HCO_3^-$$

Assumptions:
1. This process is isothermal;
2. Only CO$_2$ is dissolved in water;
3. Chemical reaction has no influence on the molar density of water phase;
4. No capillary pressure is considered;
5. Molar density of single component in the different phases is same
Modeling of CO₂ flooding

Main equations

Oil component

\[
\frac{\partial}{\partial t} (\phi S_o \rho_o) + \frac{\partial}{\partial x} (u_o \rho_o) = 0
\]

CO₂ component

\[
\frac{\partial}{\partial t} (\phi S_g \rho_g + \phi S_w \rho_w x_{CO_2,w}) + \frac{\partial}{\partial x} (u_w \rho_w x_{CO_2,w} + u_g \rho_g) = -R_m
\]

Water component

\[
\frac{\partial}{\partial t} (\phi S_w \rho_w x_{H_2O,w}) + \frac{\partial}{\partial x} (u_w \rho_w x_{H_2O,w}) = -R_m
\]

Calcium component

\[
\frac{\partial}{\partial t} (\phi S_w \rho_w x_{Ca^{2+},w}) + \frac{\partial}{\partial x} (u_w \rho_w x_{Ca^{2+},w}) = R_m
\]

Neutrality condition

\[
2x_{Ca^{2+},w} = x_{HCO_3^-,w}
\]

Molar fraction

\[
x_{CO_2,w} + x_{Ca^{2+},w} + x_{HCO_3^-,w} + x_{H_2O,w} = 1
\]

Saturation

\[
S_w + S_g + S_o = 1
\]

Porosity

\[
\frac{\partial (1 - \phi) \rho_m}{\partial t} = -R_m
\]

\[
R_m = S_w k_m A_m \left(1 - \frac{a_{CO_2,b} a_{Ca^{2+},b} a_{HCO_3^-,b}}{K_{sp}}\right)
\]

Since velocity can be expressed by Darcy’s law as function of pressure, eight unknowns and eight equations
Modeling of CO$_2$ flooding

Solution Methods

- Different approaches: simultaneous solution method, sequential iterative approach (SIA), and sequential non iterative approach (SNIA)
- SNIA approach from TOUGHREACT
Modeling of CO$_2$ flooding Using COMSOL

- The equations for each stages are available in the paper. All equations are implemented into COMSOL by using the PDE Modes, the coefficient form and solved by the segregated solver.

- A finite difference code for 3-phase immiscible or miscible flooding without chemical reaction is used to validate the model.

Three-phase flooding without reaction $\tau = 0.2$
Modeling of CO$_2$ flooding

Results

- Simulation for reservoir scale flooding
- Dissolution of calcite can be treated as equilibrium reactions

S_g from 100 to 400 days

$x_{Ca^{2+},w}$ from 100 to 400 days
Modeling of CO$_2$ flooding

- Simulation for lab scale flooding
- The effects of reactive surface area A_m on $x_{Ca^{2+},w}$

From 0.5 to 2 hours

Effect of A_m on $x_{Ca^{2+},w}$ after 1 hour
Conclusions & Future Plan

• Using SNIA, we have developed a model in COMSOL Multiphysics for miscible CO₂ flooding with dissolution reaction in the aqueous phase.

• COMSOL Multiphysics is able to provide reasonable results for this type of reactive transport problem by using the segregated solver.

• The model will be useful to study CO₂ flooding in chalk reservoir and CO₂ sequestration process. The phase equilibrium between CO₂ and oil can be added although it is not included by far.

• The geochemical model should be extended to include more reactions in order to simulate real CO₂ sequestration scenarios. Other solution method can also be tried in the future.
Acknowledgement

• This study is carried out under the project “Enhanced Oil Recovery through CO2 Utilization” funded by the Danish National Advanced Technology Foundation.

• We are grateful to Lars Gregersen, at COMSOL A/S, Denmark, for his help.
Thanks!