Fast 2D Simulation of Superconductors: a Multiscale Approach

Victor M. Rodriguez-Zermeno1, Mads P. Sørensen1, Niels Falsig Pedersen2, Nenad Mijatovic2 and Asger B. Abrahamsen3

1 DTU Mathematics
Department of Mathematics

2 DTU Electrical Engineering
Department of Electrical Engineering

3 Risø DTU
National Laboratory for Sustainable Energy
Motivation

PhD Project: Computation of Superconducting Wind Turbine Generators.
Wire architecture

Stabilizer coating

Substrate

Superconducting layer ~ 1 μm

Solder

4.5 mm

0.2 mm
Time to solution: calculation of AC losses using COMSOL

- Computing Time
 - Hardware
 - Meshing
 - Geometric simplification
 - Solver used (and parameters)

- Programming Time
 - Modules used
 - Use of Scripts
 - Weak contributions
 - Plotting while solving
 - Postprocessing

DTU Mathematics
Department of Mathematics

DTU Electrical Engineering
Department of Electrical Engineering

Risø DTU
National Laboratory for Sustainable Energy
Governing equation

\[\nabla \times (\rho \nabla \times H) = -\mu \frac{\partial}{\partial t} H \]

\[\rho = \frac{E_c}{J_c} \left(\frac{|J|}{J_c} \right)^{n-1} \]

\[J = \nabla \times H \]

\[Q = \int dt \int E \cdot J \, dS \]

\[E = \rho J \]
$E-J$ relationship in Superconductors

\[E = J \frac{E_c}{J_c} \left(\frac{\nabla \times H}{J_c} \right)^{n-1} \]
Use of COMSOL

\[e_a \frac{\partial^2 u}{\partial t^2} + d_a \frac{\partial u}{\partial t} + \nabla \cdot \Gamma = F \]

\[u = H = \begin{bmatrix} H_x \\ H_y \end{bmatrix} \quad e_a = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad d_a = \begin{bmatrix} \mu & 0 \\ 0 & \mu \end{bmatrix} \]

\[\Gamma = \rho \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} \right) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad F = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]
Conditions and Restrictions

\[I_k = \int_{c_k} J_z dS \]

\[H|_{t=0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

\[H|_{\partial \Omega} = \begin{bmatrix} H_{sx} + H_{ex} \\ H_{sy} + H_{ey} \end{bmatrix} \]
Using Free Meshes

17150 elements in the Superconducting region
Using Mapped Meshes

Only 150 elements!
Calculation of AC losses

\[Q = \xi \left(t_0 + \frac{1}{f} \right) \]

\[\dot{\xi} = f P, \quad t \in \left(t_0, t_0 + \frac{1}{f} \right) \]

\[\xi(t_0) = 0 \quad P = \int E_z J_z dS \]
Results

\[P = \int E_z J_z dS \]
Validation of Results

Computing Time

Externally applied field and current

Magnetic Field Intensity (peak value shown) for a thin superconductor when a sinusoidal Magnetic Field of 2 mT (~1.6e3 A/m) is applied.

No external current applied.

External current applied (80% critical current).
Interaction among several thin conductors

Top: Silver, no external current. Center: superconducting, imposed AC transport current ($0.9 I_c$, 50 Hz). Bottom: superconducting, no external transport current. Notice how the field is expelled from the bottom conductor.
AC electric currents \((0.9 \, Ic, \, 50 \, \text{Hz}, \, \text{in phase}) \) are applied to a stack of 15 coated conductors. Magnetic field strength at 0 phase (left) and at peak value (right). A substrate with a relative permeability of 50 was considered. The insert shows the thickness of the different layers.
Instantaneous AC losses in the previous stack of tapes (both phases are shown in the insert). Consider tapes to be enumerated from the top. Observe that the higher losses are experienced by the central conductors. Also, notice that the top conductors (tapes 1, 2 and 3) experience less loss than their bottom counterparts (tapes 15, 14 and 13).
Conclusions

Use mapped meshes and specifically, use of large aspect ratio elements, provides a considerable increase in the computing speed for calculation of AC losses in superconductors. Numerical simulations were performed showing a decrease of 2 to 3 orders of magnitude in the computing time when compared with other 2D simulation were no mapped meshes are used.

The time spent modeling every single application while using large aspect ratio elements does not depend heavily in the number of conductors and offers “similar” computing time than the 1D formulation. Therefore, the work presented here offers a faster time to solution strategy for calculating AC losses.

Finally, the ease to set a problem using the proposed formulation makes it possible to think of further applications such as superconducting coils, and induction machinery, among others in the near future.
Thank You!
References

1. **Superconductor, American.** Superconductor Motors & Generators. [Online] [Cited: September 1, 2009.]

9. **ACDC Module/Model Library/Superconducting wire.** FILES, COMSOL DOCUMENTATION.